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The Cobb-Douglas fixn?(ion is widely used in production economics in the

i b? - .
» where ﬁand ‘along with A are positive constants

4

following form: A = ALK

that relate the inputs L (=Labor) and K (=Capital) to the amount of output Q.
A variety of supposed alternatives and generalizations have been suggested in
place of the Cobb-Douglas form for use in production economics. These
alternatives and generalizations are here shown to be representable in an

rlpha {H:’L
extended Cobb-Douglas form in which A, ¢ and ﬂaro functions of L and X rather

than constants. This extension is then formally related to other general
forms, such as the minimum discrimination information statistic, and used to
explain the successful uses of the Cobb-Douglas function for empirical

»

applications in many different countries and contexts. - “.,. .74,
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1.0 Introduction

The Cobb-Douglas function, which made its first appesrance in [14 ]y

may be written in the form
(1.1) Q= aL"k?

where @ and B along with A are constants which relate the variables, e.g., the
amounts of inputs L (= Labor) and K (= Capital) Lo the amount of output Q. This
has been the most extensively used form of function for studying production
behavior in empirical economics and econometrics.

In this paper we shall build on what has already been accomplished by
a straightforward extension to

(1.2) 0 = ACL.K) 1K) (BB

in which A, o and 3 are now functions of the inputs with

(1.3) o+ B=1
a, B>0.
This formulation, as we shall see, makes casy contact with a variety of other
disciplines Lrom which most of the supposedly more gencral alternatives to
production thcory may alsov be accommodated. llence nothing weed be lost.
Cousistent also with empirical rcsults from a4 wide varicty of studies, it
leads to cqytntn new relations in the mathematical theory of liomogeneous
tunctions, and it provides access to more general results, such as are

exhibited in [8 ] and [11] , from which still further developments may

be cffected in mathematics, economics and statistics, and information theory

Y1intner et. al. [38) notes a use of this kind of function in economic theory
by Wicksell[42] in 1893 but the use of this function as ome of the earliest
(and most successful) examples of anything like a modern econometric study
must certainly be dated from the paper by C. H. Cobb and P. H. Douglas in
(14]. See also [19] which must still count as a model for economic-econometric
investigations and which must rank very high in the order of such models.




as well. .

After first dounutivng some of these possibilities, this paper will
introduce a series of specializing usunptioni ‘to tie these more general develop-
ments into known results and relations in empirical and theoretical econoamics.
These topics will be treated first from the standpoint of optimal production
at the level of the individual firm -- what {s sometimes called "intra-firm"
analysisl/-- and then extended to aggregations of firms via efficiency
frontiers and expansion paths at the level of the individual firm. The speciali-
zing assumptions needed to attain them will be clarified en route to these
results, and then they will be interpreted and related to some of the already
extant findings in empirical studies of production,

In the concluding section, a return will then be made to the natural
extension, to more than two factors, for the general formulation, given
above -- which we shall call an "Extended Cobb=-Douglas Form" -- and suggestions
will then be supplied on how the results given in this paper can be extenaed

to developments in other fields besides the ones studied here.

Vsgee [4], (5] and [6].
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2,0 A New Representation for Homogeneous Functions

To initiate our analysis we now let x represent a vector of variables
X i=l,...,n, and consider the expression

n
(2.1) hf(x) = Z £,x

1}
ge1 11

wiicii, by Euler's theorem, always holds when the function f(x) is homogeneuous of

of (x)
degree h with continuous partial derivatives f1 L { . We also consider

n € 61(‘)
x
(2.2) L
' i=1 6i(x)
toppether with
n
(2.3) z 8,(x) = 1
isl
and specify, for any i, that
6 )
(2.4) at‘ -8 Lo
NSV
it 6i 0.
If we can now choose
f.x f x
2.5) . 6 o it o -L1L
(2. 1% nf(x) "~ m
P ft't
{=1

with hf(x) >0 to sactisfy (2.3) then, by direct substitution in (2.2), we can

obtain

£ x, /hi(xn)
i1
£ x i f‘xtlhf(x)

n
(2.6) n . tel .
1=1 \ £,x, ThED) (necx)) hf(x)

IIC!. Duffin, Peterson and Zener [17], p. 79. This same convention is also
used in informstion theory. Cf., e.g., Theil [37].
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This is the same hf(x) that holds for (2.1). Hence via the derivation from

(2.2) we have obtained an apparently new result for homogeneous functions

vhich we may summarize in a way that makes 1t'innedinte1y pertinent to our

analysis via the following:

Theorem 1: Let hf(x) > 0 where f(x) is a function which {3 homogeneous of

degree h, and let f(x) have continuous partial derivatives,

then
n ,ai(x)
2.7) f(x) = A(x) 1[I (xi)
i=1
for all x where
6, (x)
1 "1‘ £
(2.8) A(x) = =
h el 61(x)
with
f x f. x
S S S ¢
(2.9 5, () = +F0 o
I f.x
(=1 ii
and
n
(2.10) 2 6,(x) = 1.
i-1

In the next section we shall supply illustrative examples to show how
other production functions (which are homogeneous) may be represented in this
extended C;bb-Douslal format. For the present, however, we observe that the
form on the right of (2.7) as specified by (2.8) - (2.9), may be used to express

any homogeneous function, and it also leads to a variety of important inter-

pretations and u-cl.l/

l/Including the zero functional which is satisfied by choosing A(x) = 0 and
adding an extrs 61(‘) 2 1 with all other bt(x) = 0 as in (2.7). There is

no real trouble for h = 0 either since we need merely restate (2.7) in terwms
of hf(x) to handle such cases. We do not undertake to develop this further,
however, since such functions are not ordinarily of interest in the economic
theory of production,
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Hereafter we shall refer to this as the "Extended Cobb-Douglas Fora".

We now exhibit one interpretation of the extended Cobb-Douglas function via

Theorem 2: For a production function f(x), homogeneous of degree h,
and with continuous partial derivatives, the hé 1(x) in
the Extended Cobb-Douglas format are the partial output

elasticities of f(x).

Proof: By definition, the ith partial output elasticity is
(2.11) v (x) ® Ef(x) . dlanf (x)
8 Ex dlnx
i i
x x, £
¢ 9f (x) i1

E(x) ox;  E(x)
= héi(x), by (2.9).

0.E.D.

We here observe that Ey/Ez represents the partial elasticity of y with respect

to 2 in the "elasticity calculus" provided by R, G. D. Allcn.l/ Then we also

 observe that we have the following:

Corollary 2.1: The total output elasticity Z:wi(x) equals the degree
i

of homogeneity.

Proof:
(2.12) Evi(x) - Eh&i(x) = h
1 1 .
since T 61(x) -1,
1
0.E.D.
1/800 [1].
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We further remark that these 61(2) are required to be non-negative, at least
in economic theory, which in turn implies that the fi’ which are the

marginal productivities, are also non-negaﬁfve when x, > 0, for all {. Our

i
representation in Theorem 1 thus carries us at least part of the way toward
explaining the success of the ordinary Cobb-Douglas functions in
econometric investigations. These functions have the 61(x) = 61, as
constants, which is to be expected when the partial output elasticities and
the fi do not vary much in the range of observations. This is to say that
in such cases the ordinary Cobb-Douglas functions should give a good !

approximation to the '"true" production function whenever the latter is

1
homogeneous .=

Parts of Professor Douglas' originally motivated search for "Laws of

Production” or what might better be called "Laws of Production and Distribution"
may now come into better view. See [14] and [19]. 1In terms of the preceding
development, we may now phrase the research question as follows: For f£(x)

allowed to range over an entire class of admissible functions to select

T - -

some best fitting function by reference to specified criteria which will
thereby determine the 61(x) >0, 2 bi(x) = 1 «= {,e., the factor proportions :
(and payments).

. We shall return to this topic later in this paper. Here, however, we
want tosturn to the interpretation of A(x). From the start this term has been

regarded as a sort of catch-all -~ "A repository of other things." See [14]

F SRy

and [18]. As (2.8) makes clear, however, it contains a great deal of information

and may be used as part of a distributional measure in a way that relates it

Y WA

to modern information theory.

l’Thc situation we have exhibited in Theorem 1 is not restricted to economics. -
Indeed ‘it also helps to explain the success of techniques like dimensional
analysis in physics and engineering. The fact that equivalent expressions
for a physical quantity must agree dimensionally in powers of length, time,
mass, etc., may also be regarded as generalizations of the concept of

homogeneity.
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In fact, applying Theorem 2 to (2.8), we observe that

; 2.13 L "1
é (2.13) A(x) = 121 ;:z;y .

Hence A(x) denotes the geometric mean of the ratios of the marginal producti=-

vities of the factors to their respective output elasticities for all factors.

~ Alternatively we can return to (2.8) and write
8

) Qn\ fi

‘5:, (2.14) 1n [hA(x)] - oy bi(x) 1n —

1:‘

i a

. where "In" is the Napierian logarithm. Subtracting - 1ln ., fj from each
. Jsl

()

::: side we obtain

K

1
N -
- hA (x) & 8, (x)

(2.15) 1In T f - - 61(x) 1In N

2 3 3 i=1 i [ b

K

*

e

? «—

fﬁ one can thus interpret the logarithm of the ratio of hA(x) to g:fj as the
: ]

‘. negative of the mean information for discrimination in favor of the hypothesis
A
k;: given by the "8 distribution' against the hypothesis given by the "fil-\'-; Ej
K

e distribution."—l'/

X This kind of "distributional" interpretation will be used later, as in our
3 discussion of aggregation, but for the present it is of interest because of
)

s interpretations that have also been employed to explain some of the Cobb-
& Douglas properties and findings. E.g., we might especially note the use of
K. Pareto distributions, as discussed in Houthakker [25] and Tintner ec. al. [38])
¥

’2 because of the fact that such distributions are also homogeneous.zl

i,
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We next relate these developments, {.e., all of the developments in this

section, to the classical arithmetic-geometric mean inequality, viz.,

n n 61
(2.16) L obp >0 u
i=1 i=1 ’

where the b, are non-negativel/ but are otherwise arbitrary. The 61, which

are "weights", must satisfy

n
(2.17) z 5, =1,6 20, all i
i=1

but are otherwise also arbitrary. As is well known, classically,;/ the

necessary and sufficient conditions for equality in (2.16) are

(2.18) e

Now for f(x) homogeneous with continuous partial derivatives and fi’ x, >0,

i
all i, we can set 6iui = £,x; 2 0 and, using Euler's theorem, obtain

6

n n fixi' 1
(2.19) hE(x) =2 £,x > 0 5
i-1 1-1 i

which is in the standard form of the geometric-arithmetic mean inequality as

used in geometric programming.gl In this form the necessary and sufficient

conditions for equality become

f x f.x £ -
2 N
(2.20) —il'—oz' T
1 2 n

and this tem-by-term relationship may be employed, as we shall later see, in

identifying the bi(x) which arc'opcimnl in the sense of cost minimizing choices.

JIStrtctly speaking they should all be positive. See [17] pp. & ££f., This

will normally be the case in economic applications, however, and so we need
not concern ourselves on this point here.

3’8« (1.

Y gee [17], pp. & Ef.

L w

Y
X )

}




TS

an s
"o

T oA A X XAt LR R

L)
!
-
)
)
1,

A
b "‘. ""A i)

()
MR

3.0 Some Illustrative Applications

Before proceeding further, we provide some simple illustrations.
Drawing on commonly employed production funcéfons (which are also homogeneous)l/
and using only two factors of production, L = "Labor" and K = "Capital", we

apply theorem 1 to three such examples as follows:
(1) Linear Case; We write this as
(3.1 Q= all,( + azL,

a production function which is homogeneous of
degree h=1 and has infinite elasticity of sub-
stitution between the indicated factors., To
apply Theorem 1 we nced

2]
s-l%nalnfl

and

for use in

(3.2) Q=AK L

where

) 1-6
! “1) <‘l
®" W\ T 1-6 .

lfcs., the tabulation given in Intriligator [26], p. 187.
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* By direct suostitution in (3,62) we then obtain
: 3 " 1-8
; . Cll( + a2L> (11 + a2L> (8 18 _
» K L
,2 = akK +a,l,
i
1)
"’ which, as wanted, is the same Q as in (3.1).
)
0
R
v (i1) Ordinary Cobb-Douglas with output elasticities constant, viz.,
) .
(3.3) qQ = m*LP

| where @ + § = h gives the degree of homogeneity --
i not necessarily 1. Again we need.
2 3

NQ_+Q_¢
g x=%x=0
)
1
f Sesd-g
i
! for use in
3
) - 6 1-6
" (3.4) Q=AK L
5

with
)
1]
o

) -

6 = h
Yy * -5 E
[ 1 = h
: and
: 6 1-5
R a g
b A - -1- K —

h ) 1-6 ‘
DR OO O MORONIOALE A o IO AL S8 2 o0 AL SOOI L0 X T Eo T L T s iAo I ol
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Direct substitution in (3.4) then produces

5 1-6
S % 'EI?' 5. 1-6
Q'K‘a‘" B KL
B h
-BKLB,

which is (3.3). Q.E.D,

(iii) Constant Elasticity of Substitution, CES, Production Function:

This is usually written
-h/o
(3.5) Q=18 [+ -] .
with the counstants B> 0, 0 < @« < 1 and h > 0, the degree
of homogencity. The elasticity of substitution, a constant,
is then given by 1/(1+0).l/ Differentiating the above

expression partially for K and L we obtain

b
3¢ -a o] ® -a-1
57(1 = ahB [o« + (1-0)L J K

I |
g

%2‘ = (1-a)hB [ax"’ + -] Lot

.

for use in

(3.6) Q= agb1-8

1/'I'he preceding two cases are obtainable from this one by means of specializing
assumptions on this elasticity. See, e.g., [2]. B5ee also [24], pp. 86-88.
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wvhere _ )
g
8 = % o ’
=g =0
k™9 + (1-@)L
a-0L"°
| 1-6 - g g
: ax~% + (1-0)L
and . (
‘ h\g -h\1.s
- <1~ 3T - -
AL (b8 [o« 4 (1-0)L°] hp Lok~ + (1-a)L °] o
- h o

K L .

Via direct substitution in (3.0), the extended Cobb-Douglas format,

Q=3 [+ (1-y=],

which is the CES function represented by (3.5).

Evidently, we can get these functions and many more, in fact any homo-

gencous function with continuous partial derivatives, via Theorem 1, We do

not pursue this further, however, so that we can begin making more pointed

interpretations via a series of specializing assumptions in the sections that
follow.
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4.0 Efficiency Frontiers and Expansion Paths

We utilize this section to cover certain preliminaries as follows. Let

¥, 8 positive constant, represent the price of the ith factor of productioa

n
min T r,x
el i1

(t.1) subject to f(x) qo
> Q

where q°, also a constant, greater than zero, represents a stipulated minimal
amount which is to be produced via the production function f(x). 1.e., the
problem is to minimize the cost of producing at least the stipulated amount,
qo, by selecting the factor quantities x, >0, i=1,....n under the given price
structure,

We shall assume f(x) is concave as well as positively homogeneous with

1/

continuous partial derivatives=' in the interior of the set x # {x:£(x) >0, x2> 0}.
We shall also assume the “Slater cuuditinns"gl for X, i.v., we shall
assume that there is some x' ™ 0 such that f(x') ~ 0. Because uf our lhomogeneity
assumption, this means that there is x" - 0 such that [(x") - qo.

Many of the production functions cmployed in economic analysis, e.g. .
the ordinary Cobb-Douglas or the CES functions have partial derivatives which
become infinite at any x, = 0. They also often have the property that if £($)>0

one must have X>0. Thus, for these cases (4.1) reduces to the problem

l’ct., e.g., Henderson and Quandt [24], p. 61,

2/¢e. [12].

. ¥, s (" P R " g ua® [ Tt mta®at - R YO o
' '.‘r','-“‘b‘t‘\ "“‘.‘l..“":"'?{"' $ Syt v () .‘l‘n ASAS TN 18" |.|I "-’ ,_ R LATAMN (L o, AN p iy




14

ain ﬁ '1‘1
{e]
(4.2) °
subject to f(x) > q >0

in which one is sure that an optimm x* > 0 -- 1.e., the optimum is taken on in
the interior of x. Therefore, the Kuhn-Tucker conditions on the existence of x*
and A* reduces to equalities rather than inequalities. Thereby, i.e., vhenever
the optimum occurs at an interior point, regardless of the condition which assures

ir (e.g., f(x) > O implies x > 0) one has

r, - \*f:
(4.3) A f(x*) - q°] = O

A* >0,

are necessary and sufficient for the optimality of x* in (4.2).

We note further that since r, > 0, all {, that A\* - 0 and

i
(4.4) £(x*) = q°
Indeed,
L a a
4.5) min, “ T,X, » . T,X* e A¥_ faxr = A\*hf(x*)
{=1 i1 lel i1 el i'i
= A\*h q°

wvhere f* is the partial derivative of f(x) evaluated at x*. Thus

is r,x%

11T ¢
- i
(4.6) A\* e .Lh.o T all i,
For the kinds of analyses we are about to undertake, it is usually assumed
that f(x) is concave, as well as homogeneous, and that for some x' we have £(x') > 0.

To clarify thi consequences concerning the degree of homogeneity we now prove,
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Theorem 3: If (i) f£(x) is positively homogeneous (ii) coacave

and (11i) for some x', f(x') > 0, then 0 < h < 1.

Proof: First note that (i) implies £(0) = 0. By concavity,

(4.7)  f(yx' + (1-¥)0) > vf(x') + (1-¥)£(0)

for 0 <y < 1. Hence, f(Yx') > Yf(x'). Now since f(x)

is homogeneous of degree h this becomes
he . \
(6.8) Y £(x') > Yf(x').
Since f(x') > 0, this gives
h.
. (4.9) Y L 1

' and this is possible only {f h < 1. 0.E.D.

Before proceeding to employ these results in our subscquent development
we might observe that they can be extended by rclaxing sowe of the above

assumptions such as, e.g., concavity, For example, if f(x) is not concave

- -

but f(x) 8 T(f(x) ) 1is, where T(u) is any homogeneous strictly isotone function

- >

ol u, our results will apply to f(x) and can be translated immediately back

L S

to f(x). We do not pursue this here, however, because we wish to make easy

3 -
k contact with known empirical and theoretical results in economics and there-
l fore reserve this more extended treatment for a subsequent paper.
Heresfter we shall assume that our f(x) are positively homogeneous and
‘l

concave and that f(x) > O implies x > 0. We shall call a function satis-

.

fying these conditions a "proper production function' and proceed to use this
concept in the development of conditions for optimal expansion or contraction
of production in the following: First we substitute from (4.3) in Theorem 1

to obtain

» LI P

[ R - . - » 2 . . - - g L . P, . (AAN » ) y
5.-\‘;‘!‘,1'\-,0‘: AN (A L IR A Ui nlth S A 1AM A e e e LGS A KR

%



Theorem &: Let f(x) be any proper production function we then

have on the expansion path,

[ o
(4.10) £(x*) mw A® [1 (xw) 1
ta] 1
where
n o
r
(4.11) AV - n(‘)
AN
and
r
4.12 - i
( ) o £ , all 1
Ly X%
fol 1%

with Gz, A* and f(x*) denoting respuctively §,
A and f(x) evaluated at x*. l.e., f(x*) (s a

point on the efficliency frontier of f(x).

Thia theorem, which ia canilv nroved, bv suyhstitution from (4.1)

in theorem 1, offers additional important internretations to the compunents

of f(x) when a firm produces optimally. First f(x*) characterizes the
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minimal cost of production of the stipulated output level q°.1/ Also, since the
constants r, > 0 are the same for each firm, q.g., for an economy in competitive
equilibrium,we also obtain a characterization of the production process which
will later be used to effect an aggregation in which the praduction functions

though proper, possibly differ in form from one firm to another.

These 6: when interpreted as in (2 2¢) then denote a "cost minimizing
distribucion" for the cost of each factor in the production process, and this
obtains when the firm is on its efficiency frontier -- or expansion path --
while A* clearly rcflects the way in which the optimal marginal productivities
are to be combined and then replaced by their corresponding unit prices.

We now draw some casy consequences for subscquent use via

Corollary &.1: If [(x) {8 any proper production function then

at the efficiency froatier,

pa rtx'fi
(4.13) FOoe) = 1Shr
where
4. 14) AY = *
( ri"t

Proof of Corollary 4.1 follows directly from the sritimetic-geometric mean

inequaut.y.l/ This being fairly obvious we proceed to

1/

="Alternatively, f(x*) may be viewed as the maximal level output for a given

budget.

yMtormuvcly, we can obtain (4.13) directly from the Kuhn-Tucker conditions

and Euler's theorem as in (2.1) ff.

8" a®m® A" r . o 'aln? ] ey €, [ $'J r-,‘.'
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Theorem §: Let £f(x) be any proper production function, as above, and
o
let x°, x* be input vectors employed to attain positive

outputs q° and g% st minimum total cost ,

Then
8° 80 b« b
(4.15) 2.1/ 1/ x|
rk x: o "I x:

if and only 1if the choices xo, x* are both on the

firm's cost-minimising expansion path.

Proof: Via the Kuhn-Tucker conditions in (4.3),

(4.16) oA
r (33
ko Tk

and so, also,

(L.17) 0 - f9
firk fk:'t =0 .

Via Theorem 1, this gives

6 6
“ —— L
.lu - =

by means of (4.12) and suitable cancellations. In the

same way ve also obtain
*

(6.19) ;% L X r, =0
1 X

1/
Lf x* {s on the cost minimizing expansion path.” Q.R,D.

1/

=" In the customary terminology of economics, x° and x* are both on the locus
formed from conditions of tangency between isocosts and isoquants. See
Intriligator (26], p. 193.
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This nov leads us naturally to consider the characterization in terms of
partial derivatives of production functions which may be represented in

Extended-Cobb Douglas form with their § L constant:

Theorem 6: The 8, are constant (output) elasticities for

1
all x if and only if
2
£ £ £
o S © SN R S
(4.20) xy [ f(xb | f(x)] )
and
£ £
"
(4.21) x5 [fik - f(x)] -0

on {x: he(x) >0} 790

andL/ assuming the second partials, viz.,

2
o f(x)
fik - xibxk

all exist for { ,k=1,.....n.

Proof: Referring to (2.9) in Theorem 1 we are in the situation
where 61(1:) r fixi/hf(x). We have 51(x) - constant if
and only if its first partial derivatives vanish for

all x, Taking the derivatives with respect to X, we have

lr‘l‘hc symbol # refers to the empty set.

>, ) U u" ~'$.~ TSN o .,ln,k » b, ! 5. ‘»"‘a'sl« \\. >
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¥ 1 |Eum & £ ‘
(4.22) gq'i £(x) +ﬂﬂ'x1<ﬂﬂ =0

or

2
£ £
A R TS B U

(4.23) x E:(,;> f(x)] f(x) -

Taking the partial derivative with respect to x,

(4.24) Efi ) fikxi i fikai -0
3, ~ hE(x) hE(x) )2
or
‘ £ £
1"k
(4.25) x, [fik - ;?;TJ = 0

which proves the thcorem.

From Theorem 5 it now follows that if 61 is constant, all i, then the
expansion path will be linear. In fact we will then have A(x*) = constant --
cf. Theorem 4 -- which is the ordinary Cobb-Douglas function and the corres-

ponding f(x*) in Theorem 2 is homogeneous of degree 1. It follows that the

6? are output elasticities by Theorem 2 and, we may observe, A* then becomes
the "long run cost of production”. All of the other usual conditions

and properties of these functions are then also present. See ilenderson and

Quandt [24], p. BS.l/

l/lcn also Nerlove [33].
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5.0 Aggregation
We now want to go from preceding results for an individual enterprise
X - to an aggregate of firms., We want to do this} however, not merely from the
4 standpoint of "pure" aggregation theory, but in a way that will enable us
to obtain insight into results from ordinarily employed statistical practices
o in which, e.g., the data are all given in the form of sums of pertinent

h inputs and outputs. Therefore, we return to (4.3) and write

} (5.1 AR f’:j

i where r, >0, i=1,...,n, is the price of the ith factor, the same for each of

é j=1,...,m firms. For each such firm x?j > 0 implies the above equality-if the

N star is to indicatec an optimal solution and so also [§j> 0 for cases of interest
: in cconomics.

llere the term "optimal" refers to cost minimization, which means, as usual,

that the price of an added unit of factor must equal its coutribution to the

] marginal cost of production for any factor used in a positive amount, e.g., for
; conditions of competitive equilibrium.

' This assumes, as alrcady noted, that r is the same for all firms but,

: of course, this need not be true for k? or f:j provided the equality indicated

4, in (3.1) obtains for each of the j=l,...,m firms. Although we will here-
after assume that the firms all have proper production functions, we will
) also allow them to vary from firm to firm. Thus we may multiply both sides

of (5.1) by x:j and sum over all { and j to obtain

‘ 5 {: E * E E * *j *
| (2.2) T X;, ® AT £EJ x
ﬁ [T TS LA Y NP R N S

[ -

¢

,!
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or’

D S SN SIS RN
(5.3) r ) X,, = A
tml gm0 yap J g 11

% k* %*
-ZN h £ (<))

where fj(x;) denotes the production function of firm j with degree of homogeneity

*

- (w* *
hj <1 and input vector x-1 (xlj,...,xnj).

Now let
(5.4) D o
i a1

denote the total amount of factor i used by these j=1,...,m firms. We can

then apply the arithmetic-geometric mean inequality to obtain

6
n n /e g\ L
(5.5) Z 20 (L}.)
1=l 1=1 N8y

n
where 6i >0, & 61 = 1. We obtain equality when

i=1
-
2 e 2
i=1

i.e., when the cost minimizing choices of x are employed in the & See (2.18)& (2.2d

- 1-

Letting A\*, h denote the vectors [kj],{hj} and X* a matrix with x* for

3

its jth row, j=1,...,m we then have

Theorem 7: Let fj(xj) J:1,...,m be any proper production functiom,

then at the expansion path of the economy
n 6* -
(5.8) . F(M,h,\%) =AM (x) !
- ey 1

} § g s e i X 0 % W OLTRI0 DOOLON 000 Bt
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where
(5.9) F(X*,h, A\ = Zhhf(x)-Zr
3-1 b I S R,
(510) A¥%= (—
1=1 \5%
and
r, x* :
174
(5.11) 6% = % ~ i=1,...,n.
r.x
a1 11

In these economy- Otindustry‘wide models, we may expect 6 >0, all i
so that also, as in Theorem 1, 2461 1. Theorems 5 and 6 also
i-1
continue to apply, of course, which means that the expansion path for this

economy or industry is

v -
(5.12) o¥r, k¥ Gkrixi 0,

and F(x*,h,A*) is of degree one at every point on this path. Furthermore,

if Theorem 6 also applies =-- i.e., 6: is constant for every i -- this

expansion path is linear and (5.8) reduces to the ordinary Cobb-Douglas functionm.
Dropping the assumption of constant elasticities we can achieve simplicity

(for purposes of insight and understanding) in another way by reverting once

more to the two-factor case as in Section 4. From Theorem 7 we can characterize

the expansion path for an economy or industry via

(5.13) OF(L*,K5h M%) = A TLal0"

where

L = {Lyh, k* = (), A* = (0], B = (n]
(5.14)

m m
K* = z K*, L*. E L*
3=1 =1 4

' . X 3 Af N SOOGD X () LMK SO th, e
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' ' &% 1=8%*
(7]
(5.15) A* '(%) (1-5*}
with
- —BK* __ bk w —L*
(3.16) o* pK* + wL* 1-4+ pK* 4 WL*

where we are using p to represent the price per unit 'capital", and ¢ the

price per unit '"labor".

In fact, substitution of the indicated expressions for A*, &% and 1-6*

on this expansion path produces
(5.17) F(L¥*,K¥ h A*) = pK¥* + WL*

directly from (5.13). This Says that total output is equal to total value

added. Moreover, 6* and 1-6*% as in (3.16) equals the share of each of these
factors in value added.

The latter coincides, we might explicitly note, with A, A, Walters' observation
that in most (cross-section) studies the coefficients of labor (i.e., its
exponents) in the Cobb=-Douglas functions utilized, are "a close approximation
to the share of labour in value adde nl/ and that "the sum of the factor
coefficients is at or near unity!' See the table below. Unlike Walters,
however, we do not conclude that this is the result of "an accounting convention
that all income must be allocated to one factor or another."?/ We conclude
rather that this suggests (in study after study) that the firms are on or
close to an optimal expansion path, The term "optimal", as throughout this
paper, continues to refer to cost minimization., Hence, we do not draw any

inference as to the presence or absence of perfect competition or the presence

of exploitation, etc.gfsince such cost minimization is compatible with fixed

1/gee [39], pp. 329-330. Ses also p. 37 in [41).
3’8« also Levy and Simon [3T].

;/ See Bronfenbrenner [5 ]..and (4] and Reder [34].
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. InTER-INDUSTRY PRODUCTION [FUNCTIONS™

N CROSS SECTION ESTIMATES

» =

?. Refer-Year Country Labour Capital Sum

:t ence o ay aL+as

! .
1889 US.A. - 51 .43 .94 \

. 1899 .62 33 .95

'y 1904 65 .31 96 |

k) 1009 63 .34 .97 (Douglas(1948)

I 1914 T I ¥ .08

i 1919 a6 .25 08

: 112 Australia 52 .47 99

. 1922-3 .53 49 1.02
1026-7 50 A4 a3 3

¥ 1044-5 . 64 a6 1.00 Gunn and Donglas (1941)

e 1936-7 49 .49 .08

g 1010-11  Victoria .74 .25 .99

I 1923-4 62 ) .92

by 1027-8 50 . .27 .86 Guun and Douglas (1940)
1933-4 N.S. Wales .65 34 .99
1937-8 5. Africa 1. 6 32 .08

J 2 45 .31 102 }B'°“'“°(""“’

N 1023  Canada A8 .48 .96

¢ 1927 A6 52 .08

:u 1935 50 52 1.02 Daly and Douglas (1943)
19037 .43 58 1.01
1938-9 N. Zealand A6 .51 .07  Williams (1945)

L 1924 U.K. (industry) 72 .18 .0 ] .

5 1030 5 13 88 Lomax (1950)

b 1946 India 66 .31 07 Tewari (1954)

o 1947 57 .50 107 Dute(1955)

% 1051 .59 40 .99 Murtiand Sastry (1957)
1909 U.S.A. (industry) .74 32 1.06 Marschak and Andrews

' (1944)

[ L]

L

[}

¥

)

o

. -1-/80urce: A. A. Walters [41]. We are indebted to

' A. A. Walters and to Econometrica, the journal of

D the Econometric Society, for permission to reproduce

¥ this table.
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prices and production quotas, e.g., such as might be imposed by a central
authority.

We have also left unattended the issues revolving around a choice of
production functionsl/ by the underlying firms and plants. Although the
notation in (2.8 ) and ( 2.9) ff. properly suggest that A(x) and the ai(x)
are all to be estimated,with x.,.and Q serving as the relevant input and
output data, we do not want to enter into questions of statistical estimation
and identification in this paper.. On the other hand, we may make at least one
suggestion which flows naturally and easily from the above analysis by observing

that a choice of &;# &6} for any i must produce

(5.18) F(6%) > F(g)

where F is defined as in (5.13), since, by Theorem 1l and its corollaries,
equality holds for each firm if and only if 61 = 6: all 1 and this is

evidently reflected in Theorem 4 as well.gl

In view of the importance of these 6i choices we may single them out
in a way that also makes contact with other important recent conceptual

and methodological developments by introducing

A

*

n a 61 n a 5,
(5.19) A=-2 8, log= = T 8, log =
1=l 6, 1=l i

In modern statistical information theory, this is called the "information
discrimination function". Cf,, e.g., Kullback [SQ]. Here it might better be
called che "efficiency discrimination function" because, via the indicated inequality,

4 =0, if and only 1f §, = 6: > 0 for every i.

Y .

I.e., we do not inquire as to whether the functions themselves also result
from optimal choices,

chf. also Klein [28] for a comparable discussion of the conditions for

aggregation of Cobb-Douglas functions.
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; 6.0 Conclusion

. We now return to the issue of the generality of our Extended Cobb-Douglas
| function, which has, we think, been exhibited in a variety of ways. Thus, for
; instance, we showed how other functions, often used in economics, can be
represented in this form. Nevertheless, our representation theorem -- {.a.,
Theorem 1 -- i{s essentially that of a Cobb-Douglas form. Indeed, the relation-
ship of the ordinary Cobb-Douglas form to our general representation may be
likened to developments in other disciplines, too, where practitioners are
confronted with "actual" applications. A case in point is the use of "linear
lumped constant” circuit representation in electrical engineering and control

n the;ry. An analyst will ordinarily use this approach to a valid approximation
. with essential simplifications to obtain the major propertics of a complex
system, Analogously our representation permits us to go directly to a suitable
(ordinary) Cobb-Douglas function by specifying the 61 and A as constants.

" Similarly the "lumping" of actual elements occurs cthrough aggregation (e.g.,

across firms) and classification (across factors or products),

» In fact we have now exhibited the Extended Cobb-Douglas Function as

, canonical for production theory. Concomitantly we have provided analytical
developments and interpretations which relate this canonical format to standard
economic constructs. Finally, we have also shown how to interpret a wide

range of ampirical results in ways which are consistent with these constructs.

In this paper we have restricted our attention to the simplest and most

o~ -
- a -
e

P

basic case of static production with a single output to be produced with a single

L

functtonl/ -=- one to a firm or plant -- from factors which are acquired at

. l/Cf. (10] for possibilities which include varying functional forms over time.
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fixed prices per unit. The representation in Theorem 1 is evidently more

‘ general than this, however, and admits of numerous other extensions and
applications. 1In preparation therefore we have taken some pains to make
contact with other new and important disciplines such as geometric programming
# and its related theory. This sets the stage for other developments as well.

t It seems best, however, to reserve these other developments for treatment

in their own right in separate papers,
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